技术中心 GUOBO

河南省果博东方冶炼有限公司

办公室

电 话:400-864-1177

传 真:+86-377-69222266

Q Q:1295555519

QQ邮箱:1295555519@qq.com

地 址
河南省商丘工业园区

网 址:http://www.001qu.com

当前位置:首页 > 技术中心

面向生产目标的铅锌烧结过程建模及优化研究

发布时间:2017-10-12 15:26  点击量:面向生产目标的铅锌烧结过程建模及优化研究

 
作为铅锌火法冶炼的一个重要流程,密闭鼓风烧结过程所生产的烧结块直接影响到后续熔炼炉炉况和铅锌的产量质量指标。烧结生产过程中综合透气性、烧穿点是两个最重要的过程状态参数,直接反映出烧结过程进行的好坏。针对影响综合透气性、烧穿点的信息具有不确定性、不完整性等特点,分别从不同的角度出发进行描述,并建立相应的集成预测模型。 在研究烧穿点和透气性的基础上,提出了烧结块的产量质量预测模型。为使得烧结过程运行在最优状态,将整个烧结过程的优化分为产量质量优化和状态参数优化两大部分。首先提出针对产量质量的优化算法,以获得过程状态参数的优化设定值。接着提出针对过程状态参数的优化算法,以获得过程操作参数的优化设定值。论文的主要研究成果包括: (1)过程状态参数的集成预测模型 首先考虑到历史数据中含有工况稳态发展趋势的有用信息,结合综合透气性的变化特点,提出具有在线修正能力的灰色理论预测模型,其根据实际综合透气性数据序列的单调性变化情况及变化后的数据个数,给出相应的修正公式;接着考虑到工艺参数预测模型能及时反映工艺参数对工况的影响,建立基于工艺参数的神经网络预测模型;最后考虑到信息熵技术具有降低不确定性带来的影响以及信息融合的能力,建立基于信息熵技术的综合透气性集成预测模型。 针对实际烧结过程烧穿点不能被直接测量的问题,建立烧穿点的软测量模型。考虑到烧穿点的波动比较大,利用T-S模糊模型来建立其预测模型,以充分有效利用历史信息;为降低不确定性带来的影响以及降低建模的难度,将综合透气性指数、台车速度和中部风箱废气温度作为影响烧穿点的主要因素;同样在建立工艺参数的预测模型之后,利用信息熵技术建立烧穿点的集成预测模型。 (2)产量质量智能预测模型 结合机理分析和数据关联性分析,选取过程状态参数以及一些关键的原料参数作为输入变量,并建立烧结块产量质量的神经网络预测模型。针对产量检测周期和过程状态参数的采样周期不一致,存在多尺度问题,引入了空间积分的思想,解决了时间周期不匹配的问题。针对传统神经网络训练算法是基于梯度信息的、具有容易陷入局部极值、收敛速度慢的缺点,将粒子群算法强大的全局搜索能力和共轭梯度法强大的局部搜索能力有机结合起来,提出了一种基于共轭梯度法的混合粒子群算法来进行神经网络的训练。 (3)基于混合粒子群算法的产量质量优化 建立了以提高产量为目标,以质量要求为约束条件的优化模型,并提出了基于改进线性搜索法的混合粒子群算法来实现产量质量的优化。该算法首先将所建立的优化函数转化为一个有两个目标的优化问题,一个是原目标函数,另一个是约束条件违反程度函数;接着为达到并行优化的目的,采用约束水平比较法来比较粒子群算法所搜索到的解;最后当粒子群算法收敛停滞时,通过引入改进的线性搜索法来提高粒子群算法的活性,从而获得综合透气性、烧穿点的优化设定值。 (4)基于多目标粒子群协同算法的过程状态参数优化 建立了以综合透气性、烧穿点等状态参数的优化设定值为目标,以生产边界条件及质量要求为约束条件,以过程操作参数为优化变量的多目标优化模型。针对该模型提出了一种多目标粒子群协同优化算法,采用改进的粒子极值选取法,以及多粒子群合作优化的方式,获得过程操作参数的优化设定值。 最后根据实际工业过程的特点,进行了烧结过程的优化仿真实验。实验结果表明所提出的优化方法能在一定程度上提高烧结块的产量质量。因此所提出的烧结过程优化方法为以后烧结生产的全流程优化提供了技术手段,同时也为复杂工业过程的建模及优化提供一种实用的、值得借鉴的实现方法。

dede:prenext get='pre'/}    下一篇:铝期货套期保值在铝加工企业中的研究

Copyright © 2002-2017 GUOBO.果博东方 版权所有

豫ICP备05001742号-1 技术支持:果博东方